• Authors:
    • Migliorini, P.
    • Mazzoncini, M.
    • Bigongiali, F.
    • Antichi, D.
    • Lenzi, A.
    • Tesi, R.
  • Source: Renewable Agriculture and Food Systems
  • Volume: 24
  • Issue: 2
  • Year: 2009
  • Summary: When animal husbandry is not included in organic farming systems, green manure may be crucial to preserve or increase soil organic matter content and to ensure an adequate N supply to crops. Different species, both legumes and nonlegumes, may be used as cover crops. The present research was carried out to investigate the effect of different green manure crops [oats and barley mixture ( Avena sativa L. and Hordeum vulgare L.), rye ( Secale cereale L.), brown mustard ( Brassica juncea L.), flax ( Linum usitatissimum L.), pigeon bean ( Vicia faba L. var. minor)] on the production of the following tomato crop. A field trial was conducted for two cropping seasons (2003-2004 and 2004-2005) in a commercial organic farm. The yield of tomato crop was positively affected by pigeon bean, although statistically significant differences in comparison with the other treatments were observed only in 2004-2005, when the experiment was conducted in a less fertile soil. This was probably due mainly to the effect of the pigeon bean cover crop on N availability. In fact, this species, in spite of a lower biomass production than the other cover crops considered in the study, provided the highest N supply and a more evident increase of soil N-NO 3. Also, cover crop efficiency, evaluated using the N recovery index, reached higher values in pigeon bean, especially in the second year. The quality of tomato fruits was little influenced by the preceding cover crops. Nevertheless, when tomato followed pigeon bean, fruits showed a lower firmness compared to other cover crops, and in the second year this was associated with a higher fruit N content.
  • Authors:
    • Filippi, F.
    • Magnani, G.
    • Bertolacci, M.
  • Source: Colture Protette
  • Volume: 38
  • Issue: 11
  • Year: 2009
  • Summary: The behaviour of two new black biodegradable mulching films (Mater-BI) was checked on cauliflower (Brassicaoleracea var. botrytis L.), comparing them to a traditional ldpe film and naked soil and at different irrigation systems (dripping irrigation, spray irrigation, without irrigation). The results showed that the water wasted reached the highest values in naked soil and the lowest in the ldpe film, while biodegradable films showed middle values. They also presented excellent results both for plant's growth and production, even higher than ldpe. About the degradation, both the biodegradable films showed good mechanical properties till the end of the cycle, with differences among the irrigation systems: degradation was faster under spray irrigation especially for the MB commercial film. Dripping irrigation was the best for production, soil humidity and film degradation.
  • Authors:
    • Florio, G.
    • Brigi, A.
    • Sandrini, S.
    • Bona, S.
    • Coletto, L.
    • Sambo, P.
  • Source: Proceedings of the Conference on integrated assessment of agriculture and sustainable development: Setting the Agenda for Science and Policy (AgSAP 2009), Hotel Zuiderduin, Egmond aan Zee, The Netherlands, 10-12 March 2009
  • Year: 2009
  • Authors:
    • Paolo, E.
    • Garofalo, P.
    • Rinaldi, M.
  • Source: Crop & Pasture Science
  • Volume: 60
  • Issue: 3
  • Year: 2009
  • Summary: The aim of this work was to apply the CropSyst simulation model to evaluate the effect of faba bean cultivation as a break crop in the continuous durum wheat cropping system in southern Italy. The model was previously calibrated and validated for durum wheat and faba bean on data derived from experiments carried out in southern Italy (for different years and treatments), comparing observed and simulated crop growth, yield, soil water, and nitrogen output variables. The validation showed good agreement between simulated and observed values for cumulative above-ground biomass, green area index, and soil water content for both crops and grain yield for durum wheat; a negative correlation for grain yield in faba bean was observed due to a reduction in harvest index in the well-watered crop, which the model does not simulate well. Subsequently, a long-term analysis was carried out to study the effects on durum wheat of introducing a legume crop in rotation with the cereal in 2 and 3-year sequences. A long-term simulation, based on 53 years of daily measured weather data, showed that faba bean, due to a lower level of transpirated water (on average 247 mm for durum wheat and 197 mm for faba bean), allowed for greater soil water availability at durum wheat sowing for the cereal when in rotation with a legume crop (on average, +84 mm/m for durum wheat following the faba bean), with positive effects for nitrogen uptake, above-ground biomass, and grain yield of wheat. The yield increase of wheat when following a faba bean crop was on average +12%, but this effect was amplified in drier years (up to 135%). In conclusion, the case study offered the potential to confirm the positive results previously obtained in long/medium-term field experiments on the introduction of faba bean in rotation with durum wheat, as well as reduction in the chemical application of nitrogen.
  • Authors:
    • Mastrorilli, M.
    • Katerji, N.
  • Source: European Journal of Agronomy
  • Volume: 30
  • Issue: 2
  • Year: 2009
  • Summary: The effect of soil texture on water use efficiency (WUE) was analyzed for six crops cultivated on loam and clay soils. Results were obtained after a long-term study, carried out in a lysimetric set-up, in conditions of experimental neutrality (climate, agro-techniques, and variety were the same for each crop) with the sole exception of the soil texture, which was the variable to be studied. In the case of potato, corn, sunflower, and sugar beet, WUE was reduced significantly when crops were grown in clay soil. The reductions ranged from 22% to 25%. The decrease of WUE in clay soil was coupled with significant reductions in yield and in ET, except in the case of the corn crop. The reduction in WUE in corn depended solely on the yield decrease. A 10% decrease in WUE values was also observed for the soy-bean and tomato grown in clay soil, but it was not statistically significant. Different causes which may reduce the WUE values observed in the clay soil are discussed. It seems coherent to hypothesize that, during the active growing phase, a deficit in water uptake occurs in the plants growing in the clay soil. This hypothesis is consistent with the observations of stomatal conductance, daily evapotranspiration, and leaf surface. In conclusion, the operative development of this study is outlined.
  • Authors:
    • Toderi, G.
    • Baldoni, G.
    • Comellini, F.
    • Giordani, G.
    • Nastri, A.
    • Triberti, L.
  • Source: European Journal of Agronomy
  • Volume: 29
  • Issue: 1
  • Year: 2008
  • Summary: The soil organic matter content represents a huge reservoir of plant nutrients and an effective safeguard against pollution; beside it can sequestrate atmospheric CO2. Since 1966 up to now in the Southeast Po valley (Italy), the soil organic C (SOC) and total N (TN) dynamics in the 0-0.40 m soil layer under a maize-wheat rainfed rotation are studied as influenced by organic and mineral N fertilizations. Every year in the same plots cattle manure, cattle slurry, and crop residues (i.e. wheat straw and maize stalk) are ploughed under to 0.40 m depth at a same dry matter rate (6.0 and 7.5 t DM ha-1 year-1 wheat and maize, respectively) and are compared to an unamended control. Each plot is splitted to receive four rates of mineral fertilizer (0-100-200-300 kg N ha-1). In the whole experiment, in 2000 SOC concentration was lower than in 1966 (6.77 and 7.72 g kg-1, respectively), likely for the deeper tillage that diluted SOC and favoured mineralization in deeper soil layer. From 1972 to 2000 SOC stock did not change in the control and N fertilized plots, while it increased at mean rates of 0.16, 0.18, and 0.26 t ha-1 year-1 with the incorporation of residues, slurry and manure, corresponding to sequestration efficiencies of 3.7, 3.8 and 8.1% of added C with the various materials. TN followed the same SOC dynamic, demonstrating how it depends on the soil organic matter. Manure thus confirmed its efficacy in increasing both SOC content and soil fertility on the long-term. In developed countries, however, this material has become scarcely available; slurry management is expensive and implies high environmental risks. Moreover, in a C balance at a farm (or regional) scale, the CO2 lost during manure and slurry stocking should be considered. For these reasons, the incorporation of cereal residues, even if only a little of their C content was found capable of soil accumulation, appears the best way to obtain a significant CO2 sequestration in developed countries. Our long-term experiment clearly shows how difficult it is to modify SOC content. Moreover, because climate and soil type can greatly influence SOC dynamic, to increase CO2 sequestration in cropland, it is important to optimize the fertilization within an agricultural management that includes all the agronomic practices (e.g. tillage, water management, cover crops, etc.) favouring the organic matter build up in the soil.
  • Authors:
    • Montemurro, F.
    • Maiorana, M.
    • Convertini, G.
    • Ferri, D.
  • Source: Agronomy for Sustainable Development
  • Volume: 27
  • Issue: 2
  • Year: 2007
  • Summary: The application of conventional agricultural practices, e. g. deep soil tillage and repeated, plentiful mineral fertilisation, can lead to a progressive deterioration of soil fertility, especially in Mediterranean environments characterised by scanty rains and high summer temperatures. As a consequence, to maintain high levels of both crop productivity and soil organic matter and to improve some soil properties, a reduction of agricultural inputs and a greater supply of organic material are needed. In the light of these considerations, we carried out a two-year field experiment in Southern Italy to determine the effects of reduced soil tillage and municipal solid waste compost application on growth parameters, production and quality of sugar beet crops, and on both soil chemical characteristics and mineral nitrogen deficit. Two soil tillage depths were compared: conventional tillage, till 40-45 cm and shallow tillage, at 15-20 cm. Within each soil tillage, the following N-fertilising strategies were tested: (1) mineral fertilisation, with 100 kg N ha(-1); (2) organic fertilisation with municipal solid waste compost at 100 kg N ha(-1); (3) mixed fertilisation, with 50% of organic N as municipal solid waste compost, and 50% of mineral N; and (4) slow-release organic-mineral N fertiliser, at 100 kg N ha(-1). All these treatments were compared with a lower level of mineral fertiliser at 50 kg N ha(-1), and with an unfertilised control. Our findings show first the absence of a significant difference in root and sucrose yields between reduced tillage and deep tillage; as shown by roots (36.02 t ha(-1)) and sucrose (3.41 t ha(-1)) yields for reduced tillage and 35.76 and 3.51 t ha(-1), respectively, for the deepest tillage. Secondly, among the N treatments, the mixed organic-mineral N fertilisation gave productions statistically not diffierent from mineral N fertilisation; as shown by root yields (36.38 versus 36.40 tha(-1)) and sucrose yields ( 3.56 versus 3.65 t ha(-1)). Third, the mixed organic-mineral N induced a reduction of 13.2% in a-amino N content by comparison with the mineral treatment of 100 kg N ha-1. Fourth, our results showed that the applications of the municipal solid waste compost increased the extracted and the humified organic carbon by +27.7 and +25.4%, compared with the mineral fertiliser, and did not raise the content of heavy metals. These findings highlighted that in Southern Italy it is sustainable to adopt alternative sugar beet production, safeguarding crops' quantitative and qualitative performance, decreasing the production costs and using the natural resources better.
  • Authors:
    • Valentini, R.
    • Tubaf, Z.
    • Sutton, M.
    • Manca, G.
    • Stefani, P.
    • Skiba, U.
    • Rees, R. M.
    • Baronti, S.
    • Raschi, A.
    • Neftel, A.
    • Nagy, Z.
    • Martin, C.
    • Kasper, G.
    • Jones, M.
    • Horvath, L.
    • Hensen, A.
    • Fuhrer, J.
    • Flechard, C.
    • Domingues, R.
    • Czobel, S.
    • Clifton-Brown, J.
    • Ceschia, E.
    • Campbell, C.
    • Amman, C.
    • Ambus, P.
    • Pilegaard, K.
    • Allard, V.
    • Soussana, J. F.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 121
  • Issue: 1-2
  • Year: 2007
  • Summary: The full greenhouse gas balance of nine contrasted grassland sites covering a major climatic gradient over Europe was measured during two complete years. The sites include a wide range of management regimes (rotational grazing, continuous grazing and mowing), the three main types of managed grasslands across Europe (sown, intensive permanent and semi-natural grassland) and contrasted nitrogen fertilizer supplies. At all sites, the net ecosystem exchange (NEE) of CO2 was assessed using the eddy covariance technique. N2O emissions were monitored using various techniques (GC-cuvette systems, automated chambers and tunable diode laser) and CH4 emissions resulting from enteric fermentation of the grazing cattle were measured in situ at four sites using the SF6 tracer method. Averaged over the two measurement years, net ecosystem exchange (NEE) results show that the nine grassland plots displayed a net sink for atmospheric CO2 of -240 +/- 70 g C m(-2) year(-1) (mean confidence interval at p > 0.95). Because of organic C exports (from cut and removed herbage) being usually greater than C imports (from manure spreading), the average C storage (net biome productivity, NBP) in the grassland plots was estimated at -104 +/- 73 g cm(-2) year(-1) that is 43% of the atmospheric CO2 sink. On average of the 2 years, the grassland plots displayed annual N2O and CH4 (from enteric fermentation by grazing cattle) emissions, in CO2-C equivalents, of 14 +/- 4.7 and 32 +/- 6.8 g CO2-C equiv. m(-2) year(-1), respectively. Hence, when expressed in CO2-C equivalents, emissions of N2O and CH4 resulted in a 19% offset of the NEE sink activity. An attributed GHG balance has been calculated by subtracting from the NBP: (i) N2O and CH4 emissions occurring within the grassland plot and (ii) off-site emissions of CO2 and CH4 as a result of the digestion and enteric fermentation by cattle of the cut herbage. On average of the nine sites, the attributed GHG balance was not significantly different from zero (-85 +/- 77 g CO2-C equiv. m(-2) year(-1)).
  • Authors:
    • Monaco, S.
    • Sacco, D.
    • Zavattaro, L.
    • Grignani, C.
  • Source: European Journal of Agronomy
  • Volume: 26
  • Issue: 4
  • Year: 2007
  • Summary: Nitrogen (N) and carbon (C) surplus can be used as indicators of an agroecosystems' ability to maintain soil fertility. Maize is the key crop of intensive forage systems in northern Italy, and large amounts of manure are often supplied to this crop. Different maize-based cropping systems and manure managements were compared in this paper. The following were assessed, using the results of an 11-year experiment: crop production and N uptakes; C and N surpluses; soil C and N contents. The treatments were maize for silage (Ms), maize for grain (Mg), double annual crop rotation maize-Italian ryegrass (Mr), and rotation maize-grass ley (Ml). Five fertilization management systems were adopted: 0N control, and bovine slurry and farmyard manure supplied at two levels, ranging from 215 to 385 kg ha-1 of total N. The dry-matter production of Mr was significantly higher than those of the other systems. The response of maize to fertilization was similar in all the cropping systems, except for Mr, for which the crop showed a high reactivity to N input at both fertilizer levels. Soil reserves were rapidly consumed in the unfertilized treatment of Mr, whereas the high productivity potential of this cropping system was exerted in fertilized plots. The introduction of a ley in rotation with maize reduced the system's DM production, due to the low yield potential of grass compared to that of maize, reduced the system response to fertilization, and diminished the exploitation of organic N at high fertilization rates. Cumulated N surplus caused an enrichment of the soil N pool size: 43% of excess N was retained by the soil. The relationship between the cumulated C surplus and the soil C pool size indicated that 26-27% was retained by the soil. Crop residues of the Mg system were less effective in building up the soil C pool than other C sources. Both slurry and farmyard manure exerted a positive effect on the soil C and N retention. When farmyard manure was used, 18% of C and 45% of surplus N were incorporated into the soil organic matter (SOM). Slurry also built up the SOM content, resulting in 9% of C and 24% of N surplus.
  • Authors:
    • Giardini, L.
    • Berti, A.
    • Lugato, E.
  • Source: Geoderma
  • Volume: 135
  • Year: 2006
  • Summary: Crop residue incorporation is recognised as a simple way to increase C input into the soil, with positive effects on C sequestration from the atmosphere. However, in some long-term experiments, a lack of response to soil C input levels has been observed as a consequence of saturation phenomena and/or interactions between C input and fertilisation. This paper analyses the outcomes of a long-term experiment in north-eastern Italy that started in 1966 and is still ongoing, where residue incorporation is compared with residue removal, over a range of mineral N fertilisations. A general decrease of SOC content was observed in the first 10 years of the experiment, followed by an approach to a steady state. However, SOC content differed markedly according to residue management and, in plots with residue incorporation, to N fertilisation. Considering 20 years as a compromise period for reaching a new equilibrium after a land-use change, the sequestration rate of residue incorporation in comparison with removal resulted as 0.17 t ha-1 of C per year. The measured data were then simulated with Century, a model based on first-order decomposition kinetic, to evaluate if the data could be interpreted by this kind of decomposition process. Model performances were good in most cases, but overestimated SOC decomposition in the more limiting situations for C and N inputs. A possible explanation is given for this behaviour, involving a feed-back effect of the microbial community.