• Authors:
    • Dowdy, R. H.
    • Clapp, C. E.
    • Linden, D. R.
  • Source: Soil & Tillage Research
  • Volume: 56
  • Issue: 3-4
  • Year: 2000
  • Summary: Because the adoption of conservation tillage requires long-term evaluation, the effect of tillage and residue management on corn (Zea mays L.) grain and stover yields was studied for 13 seasons in east central Minnesota. Three primary tillage methods (no-till (NT), fall chisel plow (CH), fall moldboard plow (MB)) and two residue management schemes (residue removal versus residue returned) were combined in a factorial design experiment on a Haplic Chernozem silt loam soil in Minnesota. No significant effects on grain yield were seen due to tillage treatments in 9 out of 13 years. The NT treatment resulted in lower yields than CH and MB treatments in years 6 and 7, and lower than the MB in year 8, indicating a gradual decrease in yield over time with continuous use of NT. There were differences due to residue management in 8 out of 13 years. The residue-returned treatments contributed about 1 Mg ha-1 greater yields in intermediate level dry years such as years 3 and 6, which had cumulative growing season precipitation 20 and 30% below the 9-year average, respectively. In excessively dry or long-term-average years, residues resulted in little yield difference between treatments. The most pronounced effects of residues were with the CH treatment for which yields were greater in 8 out of 13 years. The ratio of grain to total dry matter yield averaged 0.56 and did not vary with time or between treatments. These results apply primarily to soils wherein the total water storage capacity and accumulated rainfall are insufficient to supply optimum available water to the crop throughout the growing season. Under conditions with deeper soils or in either wetter or drier climates, the results may differ considerably.
  • Authors:
    • Wooley, R.
    • Ibsen, K.
    • Yee, W.
    • Taylor, F.
    • McAloon, A.
  • Year: 2000
  • Summary: The mature corn-to-ethanol industry has many similarities to the emerging lignocelluloseto-ethanol industry. It is certainly possible that some of the early practitioners of this new technology will be the current corn ethanol producers. In order to begin to explore synergies between the two industries, a joint project between two agencies responsible for aiding these technologies in the Federal government was established. This joint project of the U.S. Department of Agriculture's Agricultural Research Service (USDAARS)and the U.S. Department of Energy (DOE) with the National Renewable Energy Laboratory (NREL) looked at the two processes on a similar process design and engineering basis, and will eventually explore ways to combine them. This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood.
  • Authors:
    • Rossoni-Longnecker, L.
    • Janke, R. R.
    • Drinkwater, L. E.
  • Source: Plant and Soil
  • Volume: 227
  • Issue: 1
  • Year: 2000
  • Summary: Abstract In 1988 an experiment was established at the Rodale Institute Experimental Farm to study weed control and nitrogen (N) management in rotations with grain crops and N-fixing green manures under reduced tillage without the use of herbicides. Tillage intensities ranging from moldboard plow (MP) to continuous no-till (NT) were compared. We present results for maize production in 1994, the seventh year of the experiment. Our goal was to further investigate reduced tillage regimes that alternated no-till with different forms of primary tillage in legume-based systems. In the chisel-disc (CD) and MP treatments comparable yields were achieved under so-called organic (weeds controlled with cultivation and green manure N source) and conventional management (weeds controlled with herbicides and mineral N fertilizer applied). Weed competition in these treatments was minimal and the N status of maize plants was essentially the same regardless of the N source (fertilizer or green manure). Of the four organic no-till maize treatments, only the mixed-tillage system with cultivation for weed control (CD-NTc) produced yields comparable to conventional NT maize. The fate of vetch N as well as temporal N dynamics were largely determined by tillage intensity and the handling of the vetch residues at maize planting. Treatments with primary tillage (CD and MP) had extremely high levels of mineral N early in the season and had greater average net N-mineralization, even though N content of hairy vetch in these treatments was equal to or lower than that in treatments with mow-killed vetch. In terms of soil mineral N concentrations, the CD-NTc treatment was similar to the other mow-killed vetch/no-till maize treatments. However, N availability in this treatment was greater, probably due to more complete decomposition of green manure residues. Cultivation for weeds not only helped control weeds but also increased mineralization of the vetch residues, which in turn increased the N supply during the period of maximum N demand by the maize. Carefully designed rotations combining tillage reductions with the use of leguminous N sources can have multiple benefits, including improved timing of N availability, reduced herbicide applications, and improved soil quality in the long term.
  • Authors:
    • Dowdy, R. H.
    • Linden, D. R.
    • Layese, M. F.
    • Allmaras, R. R.
    • Clapp, C. E.
  • Source: Soil & Tillage Research
  • Volume: 55
  • Issue: 3-4
  • Year: 2000
  • Summary: Long-term field experiments are among the best means to predict soil management impacts on soil carbon storage. Soil organic carbon (SOC) and natural abundance 13C ([delta]13C) were sensitive to tillage, stover harvest, and nitrogen (N) management during 13 years of continuous corn (Zea mays L.), grown on a Haplic Chernozem soil in Minnesota. Contents of SOC in the 0-15 cm layer in the annually-tilled [moldboard (MB) and chisel (CH)] plots decreased slightly with years of corn after a low input mixture of alfalfa (Medicago sativum L.) and oat (Avena sativa L.) for pasture; stover harvest had no effect. Storage of SOC in no-till (NT) plots with stover harvested remained nearly unchanged at 55 Mg ha-1 with time, while that with stover returned increased about 14%. The measured [delta]13C increased steadily with years of corn cropping in all treatments; the NT with stover return had the highest increase. The N fertilization effects on SOC and [delta]13C were most evident when stover was returned to NT plots. In the 15-30 cm depth, SOC storage decreased and [delta]13C values increased with years of corn cropping under NT, especially when stover was harvested. There was no consistent temporal trend in SOC storage and [delta]13C values in the 15-30 cm depth when plots received annual MB or CH tillage. The amount of available corn residue that was retained in SOC storage was influenced by all three management factors. Corn-derived SOC in the 0-15 cm and the 15-30 cm layers of the NT system combined was largest with 200 kg N ha-1 and no stover harvest. The MB and CH tillage systems did not influence soil storage of corn-derived SOC in either the 0-15 or 15-30 cm layers. The corn-derived SOC as a fraction of SOC after 13 years fell into three ranges: 0.05 for the NT with stover harvested, 0.15 for the NT with no stover harvest, and 0.09-0.10 for treatments with annual tillage; N rate had no effect on this fraction. Corn-derived SOC expressed as a fraction of C returned was positively biased when C returned in the roots was estimated from recovery of root biomass. The half-life for decomposition of the original or relic SOC was longer when stover was returned, shortened when stover was harvested and N applied, and sharply lengthened when stover was not harvested and N was partially mixed with the stover. Separating SOC storage into relic and current crop sources has significantly improved our understanding of the main and interacting effects of tillage, crop residue, and N fertilization for managing SOC accumulation in soil.
  • Authors:
    • Dao, T. H.
    • Douglas, C. L.,Jr.
    • Schomberg, H. H.
    • Allmaras, R. R.
  • Source: Journal of Soil and Water Conservation
  • Volume: 55
  • Issue: 3
  • Year: 2000
  • Summary: Soil organic carbon (SOC) makes up about two-thirds of the C pool in the terrestrial biosphere; annual C deposition and decomposition to release carbon dioxide (CO2) into the atmospheric constitutes about 4% of this SOC pool. Cropland is an important, highly managed component of the biosphere. Among the many managed components of cropland are the production of crop residue, use of tillage systems to control crop residue placement/disturbance, and residue decomposition. An accumulation of SOC is a C sink (a net gain from atmospheric CO2) whereas a net loss of SOC is a C source to atmospheric CO2. A simple three components model was developed to determine whether or not conservation tillage systems were changing cropland from a C source to a C sink. Grain/oil seed yields and harvest indices have indicated a steadily increasing supply of crop residue since 1940, and long term field experiments indicate SOC storage in no-tillage > non moldboard tillage > moldboard tillage systems. According to adoption surveys, moldboard tillage dominated until about 1970, but non moldboard systems are now used nationally on at least 92% of planted wheat, corn, soybean, and sorghum. Consequently, since about 1980, cropland agriculture has become a C sink. Moldboard plow systems had prevented a C sink response to increases in crop residue production that had occurred between 1940 and 1970. The model has not only facilitated a qualitative conclusion about SOC but it has also been used to project production, as well as soil and water conservation benefits, when a C credit or payment to farmers is associated with the C sink in cropland agriculture.
  • Authors:
    • Mielniczuk, J.
    • Martin-Neto, L.
    • Bayer, C.
    • Ceretta, C. A.
  • Source: Soil & Tillage Research
  • Volume: 53
  • Issue: 2
  • Year: 2000
  • Summary: In weathered tropical and subtropical soils organic matter is crucial for soil productivity and its quantity depends heavily on soil management systems. This study evaluated the effect of no-till cropping systems on organic matter content and quality in a sandy clay loam Acrisol soil (Paleudult in US taxonomy) from Southern Brazil. Ten cropping systems with varying additions of C and N were conducted for 12 years (from 1983 to 1994), The addition of crop residues increased total organic carbon (TOC) and total nitrogen (TN) in the soil at 0-17.5 cm depth, and this increase was directly related with C and N added or recycled by the systems. The crop residues added to the soil were associated with reduced semiquinone free radical concentration, detected by electron spin resonance (ESR), in the organo-mineral aggregates <53 mu m and humic acid (HA) samples, in the soil at 0-2.5 cm depth. This showed that stable organic matter originating from crop residues was less humidified than the original soil organic matter. Results obtained from organo-mineral aggregates showed a higher amplitude (highest and lowest values were 5.47 and 2.09 x 10(17) spins g(-1) of TOC, respectively) of semiquinone free radical concentration than HA samples (highest and lowest values were 2.68 and 1.77 x 10(17) spins g(-1) of HA, respectively). These data showed that alterations due to tillage in soil organic matter characteristics, e.g,, humification degree can be better identified through a combination of soil physical fractionation and spectroscopic analysis. Semiquinone content in the HA samples, detected by ESR, related significantly to aromaticity, as measured by nuclear magnetic resonance (NMR) of C-13. Management systems including no-till and cropping systems with high C and N additions to the soil improved its quality in Southern Brazil. (C) 2000 Elsevier Science B,V. All rights reserved.
  • Authors:
    • Fernandes, S. V.
    • Martin-Neto, L.
    • Amado, T. J. C.
    • Mielniczuk, J.
    • Bayer, C.
  • Source: Soil & Tillage Research
  • Volume: 54
  • Issue: 1-2
  • Year: 2000
  • Summary: Soil organic matter decline and associated degradation of soil and environmental conditions under conventional tillage in tropical and subtropical regions underline the need to develop sustainable soil management systems. This study aimed first to evaluate the long-term effect (9 years) of two soil-tillage systems (conventional tillage: CT, and no-tillage: NT) and two cropping systems (oat (Avena strigosa Schreb)/maize (Zea mays L.): O/M; and oat+common vetch (Vicia sativa L.)/ maize+cowpea (Vigna unguiculata (L.) Walp): O+V/M+C without N fertilization on total organic carbon (TOC) and total nitrogen (TN) concentrations in a sandy clay loam Acrisol in southern Brazil. The second objective was to assess soil potential for acting as an atmospheric CO2 sink. Under NT an increase of soil TOC and TN concentrations occurred, in both cropping systems, when compared with CT. However, this increase was restricted to soil surface layers and it was higher for O+V/M+C than for O/M, The O+V/M+C under NT, which probably results in the lowest soil organic matter losses (due to erosion and oxidation) and highest addition of crop residues, had 12 Mg ha(-1) more TOC and 0.9 Mg ha(-1) more TN in the 0-30.0 cm depth soil layer, compared with O/M under CT which exhibits highest soil organic matter losses and lowest crop residue additions to the soil. These increments represent TOC and TN accumulation rates of 1.33 and 0.10 Mg ha(-1) per year, respectively. Compared with CT and O/M, this TOC increase under NT and O+V/M+C means a net carbon dioxide removal of about 44 Mg ha(-1) from the atmosphere in 9 years. NT can therefore be considered, as it is in temperate climates, an important management strategy for increasing soil organic matter. In the tropicals and subtropicals, where climatic conditions cause intense biological activity, in order to maintain or increase soil organic matter, improve soil quality and contribute to mitigation of CO2 emissions, NT should be associated with cropping systems resulting in high annual crop residue additions to soil surface. (C) 2000 Elsevier Science B.V. All rights reserved.
  • Authors:
    • Miller, M.
  • Source: Canadian Journal of Plant Science
  • Volume: 80
  • Issue: 1
  • Year: 2000
  • Summary: The role of mycorrhizae in phosphorus nutrition of maize is related to the fact that the P concentration in maize shoots at the four- to five-leaf stage affects final grain yield. In the early 1980s greater early-season shoot-P concentration (mg/g) and P absorption (mg/plant) from a no-till compared to a conventional tillage system were observed in Guelph, Ontario, Canada. Further studies established that the greater P absorption is due to a more effective arbuscular mycorrhizal (AM) symbiosis when the soil is not disturbed. The greater P absorption is largely a result of the undisrupted mycelium present in an undisturbed soil, rather than to increased colonization. This mycelium retains viability through extended periods in frozen soil. In the spring this mycelia network is able to acquire P from the soil and deliver it to the plant immediately upon becoming connected to a newly developing root system. Increased P absorption has not resulted in increased grain yield in field trials. Some additional factor limits yield with no-till maize preventing the advantage of early P absorption from being realized as yield. When maize follows a non-mycorrhizal crop such as rape, mycorrhizal colonization is delayed, reducing early-season P absorption. Yield reductions may occur.
  • Authors:
    • Norwood, C. A.
  • Source: Agronomy Journal
  • Volume: 91
  • Issue: 1
  • Year: 1999
  • Summary: The dryland winter wheat (Triticum aestivum L,)-grain sorghum [Sorghum bicolor (L.) Moench]-fallow rotation is suitable for large areas of the U,S. Great Plains. High temperatures and potential evapotranspiration limit the number of other crops that can be grown, Sunflower (Helianthus annnus L.) is drought tolerant, but crops such as corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] are perceived to lark sufficient heat and drought tolerance for semiarid areas. A study was conducted near Garden City, KS, from 1991 through 1995 to compare yield and water uses of conventional tillage (CT) and no tillage (NT) corn, grain sorghum, sunflower, and soybean to determine if crops other than grain sorghum are suitable for dryland production. Conventional tillage (CT) and no tillage (NT) were included in a wheat-row crop-fallow rotation. Corn and soybean were similar in their depletion of soil water, as were sorghum and sunflower. Below a depth of 1.2 m, sorghum and sunflower removed the most water. Sunflower removed the most water nom the last 0.3 m of the profile and probably removed deeper water. Sorghum and sunflower removed an average of 19 mm more water from the 1.8-m soil profile than did corn and soybean. No-till increased yields of corn in 3 yr, of sorghum and sunflower in 2 yr, and of soybean in 1 yr, Corn had the greatest yield response to NT, averaging 31%. Average yields of corn were 25% higher than sorghum yields, whereas average yields of sunflower were 83% higher than soybean yields. Other crops can be successfully grown in the wheat-row crop-fallow rotation, but sorghum should occupy the most acres until the other crops have been tested under different climatic conditions.
  • Authors:
    • Follett,R. F.
    • Reule,C. A.
    • Halvorson,A. D.
  • Source: Soil Science Society of America Journal
  • Volume: 63
  • Issue: 4
  • Year: 1999
  • Summary: No-till (NT) increases the potential to crop more frequently in the Great Plains than with the conventional-till (CT) crop-fallow farming system. More frequent cropping requires N input to maintain economical yields. We evaluated the effects of N Fertilization on crop residue production and its subsequent effects on soil organic C (SOC) and total soil N (TSN) in a dryland NT annual cropping system. Six N rates (0, 22, 45, 67, 90, and 134 kg N ha(-1)) were applied to the same plots from 1984 through 1994, except 1988 when rates sere reduced 50%, on a Weld silt loam (fine, smectitic, mesic Aridic Argiustoll). Spring hal leg (Hordeum vulgare L.), corn (Zea mays L.),winter wheat (Triticum aestivum L.), and oat (Avena sativa L.)-pea (Lathyrus tingitanus L.) hay were grown in rotation. Crop residue production varied with crop and gear. Estimated average annual aboveground residue returned to the soil (excluding hay years) was 2925, 3845, 4354, 4365, 4371, and 4615 kg ha(-1), while estimated annual contributions to belowground (root) residue C were 1060, 1397, 1729, 1992, 1952, and 2031 kg C ha(-1) for the above N rates, respectively. The increased amount of crop residue returned to the soil with increasing N rate resulted in increased SOC and TSN levels in the 0- to 7.5-cm soil depth after 11 crops. The fraction of applied N fertilizer in the crop residue decreased with increasing N rate. Soil bulk density (D-b) in the 0- to 7.5-cm soil depth decreased as SOC increased, The increase in SOC with N fertilization contributes to improved soil quality and productivity, and increased efficiency of C sequestration into the soil. Carbon sequestration can be enhanced by increasing crop residue production through adequate N fertility.