• Authors:
    • Frisvold, G. B.
    • Konyar, K.
  • Source: Water Resources Research
  • Volume: 48
  • Issue: 5
  • Year: 2012
  • Summary: This study examined how agriculture in six southwestern states might adapt to large reductions in water supplies, using the U.S. Agricultural Resource Model (USARM), a multiregion, multicommodity agricultural sector model. In the simulation, irrigation water supplies were reduced 25% in five Southern Mountain (SM) states and by 5% in California. USARM results were compared to those from a "rationing" model, which assumes no input substitution or changes in water use intensity, relying on land fallowing as the only means of adapting to water scarcity. The rationing model also ignores changes in output prices. Results quantify the importance of economic adjustment mechanisms and changes in output prices. Under the rationing model, SM irrigators lose $65 in net income. Compared to this price exogenous, "land-fallowing only" response, allowing irrigators to change cropping patterns, practice deficit irrigation, and adjust use of other inputs reduced irrigator costs of water shortages to $22 million. Allowing irrigators to pass on price increases to purchasers reduced income losses further, to $15 million. Higher crop prices from reduced production imposed direct losses of $130 million on first purchasers of crops, which include livestock and dairy producers, and cotton gins. SM agriculture, as a whole, was resilient to the water supply shock, with production of high value specialty crops along the Lower Colorado River little affected. Particular crops were vulnerable however. Cotton production and net returns fell substantially, while reductions in water devoted to alfalfa accounted for 57% of regional water reduction.
  • Authors:
    • Liu, W. Z.
    • Li, Y.
    • Zhu, H. H.
    • Coleman, K.
    • Wu, J. S.
    • Guo, S. L.
  • Source: Plant and Soil
  • Volume: 353
  • Issue: 1/2
  • Year: 2012
  • Summary: Aims: Concerns over food security and global climate change require an improved understanding of how to achieve optimal crop yields whilst minimizing net greenhouse gas emissions from agriculture. In the semi-arid Loess Plateau region of China, as elsewhere, fertilizer nitrogen (N) inputs are necessary to increase yields and improve local food security. Methods: In a dryland annual cropping system, we evaluated the effects of N fertilizers on crop yield, its long-term impact on soil organic carbon (SOC) concentrations and stock sizes, and the distribution of carbon (C) within various aggregate-size fractions. A current version (RothC) of the Rothamsted model for the turnover of organic C in soil was used to simulate changes in SOC. Five N application rates [0 (N0), 45 (N45), 90 (N90), 135 (N135), and 180 (N180) kg N ha -1] were applied to plots for 25 years (1984-2009) on a loam soil (Cumulic Haplustoll) at the Changwu State Key Agro-Ecological Experimental Station, Shaanxi, China. Results: Crop yield varied with year, but increased over time in the fertilized plots. Average annual grain yields were 1.15, 2.46, 3.11, 3.49, and 3.55 Mg ha -1 with the increasing N application rates, respectively. Long-term N fertilizer application increased significantly ( P=0.041) SOC concentrations and stocks in the 0-20 cm horizon. Each kilogram of fertilizer N applied increased SOC by 0.51 kg in the top soil from 1984 to 2009. Using RothC, the calculated annual inputs of plant C (in roots, stubble, root exudates, etc.) to the soil were 0.61, 0.74, 0.78, 0.86, and 0.97 Mg Cha -1 year -1 in N0, N45, N90, N135 and N180 treatments, respectively. The modeled turnover time of SOC (excluding inert organic C) in the continuous wheat cropping system was 26 years. The SOC accumulation rate was calculated to be 40.0, 48.0, 68.0, and 100.0 kg C ha -1 year -1 for the N45, N90, N135 and N180 treatments over 25 years, respectively. As aboveground biomass was removed, the increases in SOC stocks with higher N application are attributed to increased inputs of root biomass and root exudates. Increasing N application rates significantly improved C concentrations in the macroaggregate fractions (>1 mm). Conclusions: Applying N fertilizer is a sustainable practice, especially in carbon sequestration and crop productivity, for the semiarid Loess Plateau region.
  • Authors:
    • Rydberg, T.
    • Arvidssona, J.
    • Kellerab, T.
    • Håkanssona, I.
  • Source: Acta Agriculturae Scandinavica, Section B - Soil & Plant Science
  • Volume: 62
  • Issue: 4
  • Year: 2012
  • Summary: Rapid, uniform crop establishment is a precondition for efficient crop production. In order to develop guidelines for seedbed preparation and sowing, extensive experiments were carried out in plastic boxes placed in the field directly on the ground for studies of the effects of seedbed properties on crop emergence. This paper deals with the effects on emergence of cereals caused by surface-layer hardening, induced by simulated rainfall (irrigation) after sowing followed by dry weather. The experimental crop was spring barley (Hordeum vulgare L.). Soils for the experiments (Eutric Cambisols, silt loam or clay loam in most cases) were collected from the surface layer of farm fields in various parts of Sweden. On soils with high silt content, irrigation after sowing often caused slumping and subsequent hardening of the whole seedbed. On clay soils, usually only a shallow surface crust formed. The earliest irrigation had the most negative effects on crop emergence. On a silt loam soil with unstable structure, irrigation with only 5 mm reduced emergence to under 20%. Later or heavier irrigation was often less negative, as it allowed the plants to emerge before the surface layer dried and hardened. Deep sowing greatly increased the negative effects on emergence, whereas soil aggregate size usually had negligible effects. It was concluded that when sowing in practice, seedbed preparation and sowing depth should be chosen to promote the fastest possible emergence. Sowing immediately before rain should be avoided, as should shallow sowing that requires rain for the seed to germinate.
  • Authors:
    • Abid, H.
    • Shakeel, A.
    • Nadeem, T.
    • Chattha,T. H.
    • Hakoomat, A.
  • Source: Food, Agriculture and Environment
  • Volume: 10
  • Issue: 2
  • Year: 2012
  • Summary: A field study was conducted during 2006-2007 and 2007-2008 at Central Cotton Research Institute, Multan, Pakistan, on silt loam soils to evaluate the effect of irrigation at different growth stages and phosphorus application methods on agronomic traits of wheat. The field experiments were laid out in a split plot design with three replications. The irrigation treatments, i.e. control - no irrigation (I 1), two irrigations at crown root and booting stage (I 2), three irrigations at crown root, booting and grain development (I 3), four irrigations at crown root, booting, anthesis and grain development (I 4) and five irrigations at crown root, booting, earing, anthesis and grain development (I 5) were kept in main plots. The subplots were allocated to three phosphorus application methods viz. side dressed, 3 inches aside seed (I 1), broadcasting at the time of seedbed preparation (P 2), and top dressing after first irrigation (P 3). Data on yield components such as tiller number m -2, spikelet number spike -1, number of grains spike -1and 1000-grain weight as well as grain and total dry matter (TDM) yields were collected. Full irrigation (I 4, I 5) treatments significantly affected yield and yield components. A reduction in all studied characters of wheat crop was subjected to water stress at low or greater degree (e.g. I 1, I 2, and I 3). Phosphorus application as side dressed (P 1), 3 inches aside seed, was more beneficial for increasing yield and yield components of wheat compared to other methods of P application.
  • Authors:
    • Hosseini, S. M. B.
    • Jahansooz, M. R.
    • Heidari, H.
    • Chaichi, M. R.
  • Source: Annals of Biological Research
  • Volume: 3
  • Issue: 6
  • Year: 2012
  • Summary: The aim of the study was to determine the effect of alternate irrigation method and deficit irrigation on radiation use efficiency and forage quality of foxtail millet ( Setaria italica) under a double cropping system after barley ( Hordeum vulgar). Conventional furrow irrigation (M1) and alternate furrow irrigation (M2) methods and different deficit irrigation levels including 100, 85, 70 and 55% of crop water requirement (V1, V2, V3 and V4) were tested in a field experiment on the west of Tehran, Iran for 2 years (2008 and 2009). Results showed that alternate furrow irrigation with 85% of crop water requirement (M2V2) had the highest Absorption Ratio of Photosynthetically Active Radiation (PARAR) and Cumulative Absorption of Photosynthetically Active Radiation (PARCA) in 2008 (P
  • Authors:
    • O'Donovan, J. T.
    • Blackshaw, R. E.
    • Hao, X. Y.
    • Li. C. L.
    • Harker, K. N.
    • Clayton, G. W.
  • Source: Soil & Tillage Research
  • Volume: 118
  • Year: 2012
  • Summary: Environmentally Smart Nitrogen (ESN), a type of polymer-coated urea, synchronizes N release with crop demand to increase N use efficiency and potentially reduce N 2O emissions. This study investigated the effects of ESN and weed management on N 2O emissions from soil under a canola ( Brassica napus L.) no-till cropping system. The experiment was conducted from 2005 to 2008 at three sites: Lethbridge, Lacombe, and Beaverlodge, located in southern, central and northern Alberta, Canada. Treatments included a hybrid and an open-pollinated canola cultivar, with ESN and urea applied at 1 and 1.5 times (*) the recommended rate, and herbicide at 50 and 100% of registered in-crop application rates. Canola was grown in rotation with barley ( Hordeum vulgare L.) and both phases of crop rotation were present each year. The N 2O fluxes from soil were measured using vented static chambers at 2-week intervals during the growing season from 2006 to 2008. Except for a few occasions with higher fluxes from urea than ESN earlier in the growing season and higher fluxes from ESN than urea later on, N 2O fluxes were similar among all treatments for all three years and three sites. The N 2O fluxes also varied over the growing season, and peak flux occurred in response to rainfall events. Similarly, cumulative N 2O emissions, expressed as either per land area or per canola seed yield, over the three growing seasons were low (0.15-2.97 kg N ha -1 yr -1 or 0.05-1.19 g N kg -1 seed) for all treatments and sites, and unaffected by weed management or crop variety ( P>0.05). The N 2O emission across the three sites from ESN averaged 20% lower ( P=0.040) than from urea although the differences between fertilizer types or application rates were not significant ( P>0.05) at each site. Elevated N 2O emissions (72% higher; P=0.028) from 1.5 * ESN (0.83 kg N ha -1 yr -1 or 0.33 g N kg -1 seed) relative to 1 * ESN (0.26 kg N ha -1 yr -1 or 0.16 g N kg -1 seed) were only observed at Beaverlodge while emissions were similar ( P>0.05) at the other two sites. The higher N 2O emissions at 1.5 * ESN at Beaverlodge were due to excess N accumulation in soil caused by unfavourable weather conditions that reduced canola N uptake and yield. Our results suggest that ESN fertilizer could reduce N 2O emissions in Alberta, Canada, but reductions will depend on rainfall events and canola N utilization.
  • Authors:
    • Thomashow, L. S.
    • Paulitz, T. C.
    • Kwak, Y. S.
    • Bonsall, R. F.
    • Parejko, J. A.
    • Mavrodi, O. V.
    • Mavrodi, D. V.
    • Weller, D. M.
  • Source: Applied and Environmental Microbiology
  • Volume: 78
  • Issue: 3
  • Year: 2012
  • Summary: Natural antibiotics are thought to function in the defense, fitness, competitiveness, biocontrol activity, communication, and gene regulation of microorganisms. However, the scale and quantitative aspects of antibiotic production in natural settings are poorly understood. We addressed these fundamental questions by assessing the geographic distribution of indigenous phenazine-producing (Phz +) Pseudomonas spp. and the accumulation of the broad-spectrum antibiotic phenazine-1-carboxylic acid (PCA) in the rhizosphere of wheat grown in the low-precipitation zone (
  • Authors:
    • Dhaka, A. K.
    • Dahiya, S. S.
    • Pannu, R. K.
    • Singh, M.
  • Source: Crop Research
  • Volume: 43
  • Issue: 1/2/3
  • Year: 2012
  • Summary: The survey was conducted in Haryana state during rabi season of 2005-06 on 972 farmers in 54 villages of 16 districts with respective cropping system i. e. pearl millet-wheat, cotton-wheat and rice-wheat. The 18 farmers from each village were selected randomly covering small (4.0 ha) group of land holders. Only those farmers were selected, who had grown PBW 343 variety of wheat. The sample sizes for pearl millet-wheat, cotton-wheat and rice-wheat of all three small, medium and large farm size groups were 90, 108 and 126, respectively. Yield reported in rice-wheat system was higher than cotton-wheat and pearl millet-wheat system. Maximum yield was observed with the use of more than five bags urea/ha. Numbers of irrigations above 4 and seed rate above 100 kg/ha were also reported to increase in yield. Protein content of wheat in pearl millet-wheat system was the highest. Protein content in late sown wheat in pearl millet-wheat system was higher than cotton-wheat and rice-wheat systems. Seed rate of 100 kg/ha and nitrogen dose of five bags of urea/ha gave significantly higher protein content. Quantitative production of wheat in rice-wheat and cotton-wheat cropping systems was higher than pearl millet-wheat system but quality in terms of protein content was significantly superior to both the rice-wheat and cotton-wheat systems. Hence, export market should be developed in quality grain producing zone i. e. in pearl millet-wheat growing areas, where lower percentage of farmers use higher nitrogen doses and cultivation practices were numerically better than other cropping systems.
  • Authors:
    • Necula, D.
    • Necula, R.
  • Source: Lucrări Ştiinţifice
  • Volume: 14
  • Issue: 1
  • Year: 2012
  • Summary: Bucharest Ilfov Region Agriculture still occupies an important place, having large reserves of development, determined by soil quality, climate factors, technical equipment and materials and labor (or work within major research institutes in the field). However, productivity is lower productivity sector registered in EU countries due to insufficient technical equipment, small scale agricultural enterprises, which represent obstacles to effective development. Also, irrigation systems are underdeveloped.
  • Authors:
    • Bejiga, G.
    • Khalil, Y.
    • Kumar, S.
    • Haddad, A.
    • Piggin, C.
    • Ahmed, S.
  • Source: Soil & Tillage Research
  • Volume: 121
  • Year: 2012
  • Summary: Conservation agriculture is becoming popular due to its potential for enhanced productivity and cost savings among small scale farmers in developing countries. The International Center for Agricultural Research in Dry Areas is promoting conservation cropping systems that involve cereal-legume rotation in West Asia and North Africa region. Studies were made on the impact of long-term rotation trial on diseases of chickpea and lentil as well as the evaluations of lentil genotypes for their reactions to Fusarium wilt and downy mildew under two tillage practices. In the long-term rotation trials, the two season results showed no significant differences between tillage practices, crops and planting dates and their interactions in affecting mean percent cyst nematode disease. The mean cyst nematode disease incidence ranged from 7.3% on early planted lentil on CT to 14.5% in late planted chickpea on ZT. Tillage practices significantly ( P≤0.05) affected Ascochyta blight incidence but not its severity. The incidence ranged from 4% to 22.5% under early planted chickpea on both tillage practices. Moreover, the mean severity ranged from 3.2 to 5.5 rating in early planted CT and ZT, respectively. The combined analysis showed significant differences ( P≤0.05) among genotypes but not their interactions with tillage for Fusarium wilt and downy mildew reactions. All the genotypes showed less than 10% Fusarium wilt mortality indicating high levels of resistance. The mean downy mildew severity ranged from 1.3 in ILL-7991 to 2.6 rating in ILL6994. This study showed that both soil borne and foliar diseases could be a problem in conservation cropping system and continuous monitoring of diseases is essential to prioritize management practices in relation to conservation agriculture in Mediterranean type environments. Moreover, cool-season legume genotypes with disease resistance and high yield can be developed under conservation agriculture that could also serve traditionally tilled production systems.