• Authors:
    • Post, W. M.
    • West, T. O.
  • Source: Soil Science Society of America Journal
  • Volume: 66
  • Issue: 6
  • Year: 2002
  • Summary: Changes agricultural management can potentially increase the accumulation rate of soil organic C (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil C sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 +/- 14 g C m(-2) yr(-1), excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 20 +/- 12 g C m(-2) yr(-1), excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine mar L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5 to 10 yr with SOC reaching a new equilibrium in 15 to 20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40 to 60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.
  • Authors:
    • Grove, J. H.
    • Diaz-Zorita, M.
  • Source: Soil & Tillage Research
  • Volume: 65
  • Issue: 1
  • Year: 2002
  • Summary: The western part of the Argentine Pampas is a subhumid and semiarid region consisting of extensive plain with deep sandy and sandy-loam soils. The agricultural system includes pastures in rotation with annual grain crops and grazed crops or continuous annual row cropping. The objective of this review was to present and discuss changes in soil properties due to different soil management systems, mainly no-tillage practices, in the western part of the Argentine Pampas. The effects of tillage, crop sequences under no-till, and grazing on soil properties and crop productivity have been studied since 1990 on loamy and sandy Haplic Phaeozem (Typic Hapludolls and Entic Hapludolls) and Haplic Kastanozem (Typic Haplustolls). A database developed from the yield and soil test records of growers affiliated with Regional Consortium for Agricultural Experimentation (CREA) were also utilized in the study. The results showed that soil organic C (SOC) content depends both on soil texture and soil management. SOC decreases when the length of the row crop cycle increases and also in moldboard plow and chisel-tillage systems. Pastures and no-till row crop sequences with more years of maize (Zea mays L.) and wheat (Triticum aestivum L.), than sunflower (Helianthus annus L.) or soybean (Glycine max (L.) Merrill) tended to increase the SOC content in the 0-20 cm layer. Deep tillage of no-till soils with compacted layers improved maize dry matter production but, in the same experiment, yield was increased more by nitrogen fertilization than by subsoil tillage. The grazing of crop residues increases the soil bulk density only in the 0-5 cm layer of tilled soils, but did not significantly change bulk density on soils under continuous no-till. Crop productivity was related to SOC content of the 0-20 cm layer of the soils. Due to the positive effect of SOC on crop yields, no-till soil management and pasture-annual row crop rotations are two practices that permit the development of sustainable production systems in the western part of the Argentine Pampas.
  • Authors:
    • Duarte, G. A.
    • Diaz-Zorita, M.
  • Source: Siembra Directa II
  • Year: 2001
  • Summary: Notes are given on the effects of incorporation of direct grazing in systems of continuous zero tillage in western Buenos Aires, Argentina. It is concluded that incorporation of grazing with direct sowing practices in mixed production systems is feasible, with the aim of maintaining high levels of stubble cover. The removal of crop residues reduces the potential for conservation of soil water and attenuates the impact of trampling by animals.
  • Authors:
    • Rivero, M. L.
    • Sasal, C.
    • Andriulo, A.
  • Source: Siembra Directa II
  • Year: 2001
  • Summary: Notes are given on the role of conservation production in the reduction of greenhouse gases. Responses of soil carbon to agricultural practices, the introduction of agriculture to native vegetation, and conversion of cultivated land to perennial vegetation are discussed. The effects of tillage, integration of residues, mulching and cover crops are also considered. Emissions and capture of carbon dioxide in rough pampas are described, with reference to continuous agriculture, conservation production and potential for capture of carbon by conservation production systems.
  • Authors:
    • Dı́az-Zorita, M.
  • Source: Soil & Tillage Research
  • Volume: 54
  • Issue: 1-2
  • Year: 2000
  • Summary: Subsoiling a compacted soil should loosen it, improve the physical conditions, and increase nutrient availability and crop yields. The aim of this work is to compare the effects of different tillage and fertility treatments in a loamy Typic Hapludoll soil, and to determine the interactions of N fertilization with several soil properties and dryland corn (Zea mays L.) productivity, The experiment, conducted in 1995 and in 1997, had a split-plot design consisting of three tillage systems (MB=moldboard plowing, CH=chisel plowing or NT=no-tillage) in a corn-soybean (Glycine max (L.) Merrill) rotation since 1991 as main treatments. Four subtreatments: (i) subsoil (paratill subsoiler to 40 cm depth in fallow 1995)+N fertilization (100 kg ha(-1) N as ammonium nitrate, at the V6 development stags of corn), (ii) subsoil+no N fertilization, (iii) no subsoiling+N fertilization, and (iv) no subsoiling+no N fertilization. Chemical and physical properties in the top layer of the soils were determined at seeding in 1995. Penetration resistance was measured at seeding, flowering and at harvest in 1995 and at seeding in 1997. Corn shoot dry matter during vegetative stages and grain yield components were also determined. The preparation of seedbed using either moldboard or chisel plowing with or without deep-tillage, increased the vegetative biomass by 27% and the grain yield of the corn crops by 9% over the no-tillage system. Subsoiling no-till plots improved the vegetative growth of the crops, but the effect of the deep-tillage did not modify the corn grain yields. Grain yields were strongly related to the N fertilization treatments. Although bulk density values (BD) ranged between 1.05 and 1.33 Mg m(-3) differences in crop yields were attributed to differences in the ED and the N fertilization. In the western Pampas Region of Argentina, the production of high yielding corn crops, under no water stress conditions, is independent of the tillage systems but negatively related with the soil BD values, and positively dependent on N fertilization.
  • Authors:
    • Peinemann, N.
    • Buschiazzo, D. E.
    • Dí­az-Zorita, M.
  • Source: Agronomy Journal
  • Volume: 91
  • Issue: 2
  • Year: 1999
  • Summary: Crop productivity under dryland conditions is largely limited by soil water availability. Soil organic matter (SOM) contents have been found to be a reliable index of crop productivity in semiarid regions because it positively affects soil water-holding capacity. Our objectives were to explain differences in wheat (Triticum aestivum L.) yields in response to SOM levels and related properties and to quantify the contribution of a unit increment of SOM content to soil productivity during 1991,1992, and 1994 on a total of 134 production fields in the semiarid Argentine Pampas. Wheat yields were related to both soil water retention and total organic C (TOC) contents in the top layers (0-20 cm) in years with low moisture availability (1992 [r = 0.51, P < 0.01] and 1994 [r = 0.59, P < 0.01]), and were related to both total N and available P contents in a year without water deficit stress (1991 [r = 0.58, P < 0.01]). Wheat yields over all years were linearly related to TOC (r = 0.68, P < 0.01) when these contents were <17.5 g kg-. Dependence of wheat yields on soil water retention and on TOC contents under water deficit was related to the positive effect of these soil components on plant-available water. In the absence of water deficit (1991), nutrient availability was the limiting factor. Losses of 1 Mg SOM ha- were associated with a decrease in wheat yield of approximately 40 kg ha-. These results demonstrate the importance of using cultural practices that minimize losses of soil organic C in the semiarid Argentine Pampas.
  • Authors:
    • Lindwall, C. W.
    • Roman, E. S.
    • Moyer, J. R.
    • Blackshaw, R. E.
  • Source: Crop Protection
  • Volume: 13
  • Issue: 4
  • Year: 1994
  • Summary: Soil erosion by wind or water is a serious problem in North and South America. When no-till or reduced tillage is used to control erosion, the density of certain annual and perennial weeds can increase and new weed control techniques are usually required. The effects of conservation tillage on annual and perennial weeds, weeds that are spread by wind, plants from rangelands and pasture as weeds and volunteer plants as weeds arc reviewed. Current weed control methods with minimum tillage, herbicides, cover crops and other cultural practices in conservation tillage systems in North and South America are described. Some producers are successfully controlling weeds in continuous summer cropping systems in North America and in double cropping systems that include wheat in the winter and soybean or corn in the summer in Brazil, Argentina and southeastern United States. Successful conservation tillage systems usually involve cropping sequences of three or more crop types and several herbicides. In these cropping sequences, the ground is covered with a crop during most of the period in which the climate is favourable for weed growth. Perennial weeds are a problem in all tillage systems and there is a general dependence on glyphosate for perennial weed control. In successful conservation tillage systems, the amount and cost of herbicides used is similar to that for herbicides used in conventional tillage systems.
  • Authors:
    • Hernandez, C. F.
    • Casanova, M. R.
  • Source: Avance Agroindustrial
  • Volume: 14
  • Issue: 57
  • Year: 1994
  • Summary: In field trials on degraded or fertile soils at 2 sites in Tucuman in 1991-93, maize was sown directly or following a range of cultivations as part of a rotation with wheat and soyabeans, or in a system of continuous cultivation, and with or without application of N and P. Application of 60-80 kg N as urea was recommended under trial conditions; P had no further beneficial effect. The importance is stressed of maintaining the water balance by reducing disturbance of the soil and of increasing N use efficiency through management of stubble and cover crops. Production systems based on direct sowing, rotations, green manures, and sowing into stubble with application of complementary fertilizer were recommended to give the highest grain yields.