• Authors:
    • Rickman, R. W.
    • Liang, Y.
    • Albrecht, S. L.
    • Machado, S.
    • Kang, S.
    • Gollany, H. T.
  • Source: Agronomy Journal
  • Volume: 103
  • Issue: 1
  • Year: 2011
  • Summary: Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations, fertilizer or organic amendments, and crop residue managements using the CQESTR model and (ii) to predict the potential of no-tillage (NT) management to maintain SOC stocks while removing crop residue. Classical LTEs at Champaign, IL (1876), Columbia, MO (1888), Lethbridge, AB (1911), Breton, AB (1930), and Pendleton, OR (1931) were selected for their documented history of management practice and periodic soil organic matter (SOM) measurements. Management practices ranged from monoculture to 2- or 3-yr crop rotations, manure, no fertilizer or fertilizer additions, and crop residue returned, burned, or harvested. Measured and CQESTR predicted SOC stocks under diverse agronomic practices, mean annual temperature (2.1-19 degrees C), precipitation (402-973 mm), and SOC (5.89-33.58 g SOC kg(-1)) at the LTE sites were significantly related (r(2) = 0.94, n = 186, P < 0.0001) with a slope not significantly different than 1. The simulation results indicated that the quantities of crop residue that can be sustainably harvested without jeopardizing SOC stocks were influenced by initial SOC stocks, crop rotation intensity, tillage practices, crop yield, and climate. Manure or a cover crop/intensified crop rotation under NT are options to mitigate loss of crop residue C, as using fertilizer alone is insufficient to overcome residue removal impact on SOC stocks.
  • Authors:
    • Hartman, J. C.
    • Orozco, R. A.
    • Nippert, J. B.
    • Springer, C. J.
  • Source: Biomass and Bioenergy
  • Volume: 35
  • Issue: 8
  • Year: 2011
  • Summary: Switchgrass ( Panicum virgatum L.) is a broadly adapted warm-season grass species native to most of the central and eastern United States. Switchgrass has been identified as a potential biofuel species because it is a native species that requires minimal management, and has a large potential to sequester carbon underground. Since the 1990's, switchgrass has been bred to produce cultivars with increased biomass and feedstock quality. This review addresses potential ecological consequences of widespread switchgrass cultivation for biofuel production in the central United States. Specifically, this review address the ecological implications of changing use of marginal and CRP land, impacts on wildlife, potentials for disease and invasions, and changes in soil quality through reductions in erosion, decomposition rates, and carbon sequestrations. A central theme of the review is the utility of maintaining landscape heterogeneity during switchgrass biofuel production. This includes implementing harvest rotations, no till farming, and mixed species composition. If negative ecological consequences of switchgrass cultivation are minimized, biofuel production using this species has economical and environmental benefits.
  • Authors:
    • Avci, M.
  • Source: Agronomy for Sustainable Development
  • Volume: 31
  • Issue: 2
  • Year: 2011
  • Summary: Central Anatolian soils have high risk of erosion, degradation and intensive cultivation. Consequently, they are in danger of exhausting their agricultural use unless conservation agricultural practices are adopted. Conservation agriculture is a key tool in sustainable production systems throughout the world and is developed around soil management technology that minimizes soil disturbance, maximizes the soil cover and promotes crop diversity to offer benefits to farmers and to the environment. It has been particularly effective at sustaining crop production in semi-arid rain-fed regions such as the Central Anatolian soils, where potential evaporation exceeds precipitation during most months of the year, dry farming is extensively practiced, water and wind erosion is common, and proper application of water- and soil-conserving tillage technology is critical. The area under plow expanded its limits as the number of tractors in agriculture dramatically increased in the 1960s. This is the starting point for inappropriate use of the agricultural land. The conservation agricultural technologies, therefore, are of utmost importance for the region. Common farmers' practices of a fallow-wheat system in the central plateau of Turkey are incompatible with the conservation agriculture concept. The objective of this review is to re-evaluate the performances of the partial and full conservation tillage practices previously tried in the region. This review reached the following conclusions: (1) agreeing with the conservation principles, fall tillage as a primary operation in the fallow phase was found to be useless compared with leaving the land without tillage; (2) therefore, much research has focused on spring tillage as a primary operation and employed conventional, semi-conservative and conservative methods. Results showed that the conventional system, in addition to being ecologically unfriendly, is unprofitable as compared with other conservation practices regarding the updated cost analysis; (3) similarly, tillage depth in primary spring tillage was determined to be shallower than the depths currently practiced by farmers, in agreement with the conservation principles; (4) fallow tillage operations in summer to create dust mulch for eliminating soil moisture loss did not increase the crop yields and soil moisture as compared with chemical fallow; (5) no-till fallow was similar to the conventional clean fallow system in terms of moisture and yield levels. However, no-tillage resulted in 50% reduction in the cost of tillage besides its ecologically-friendly effects; (6) the existing dryland agricultural systems in the plateau should be transformed into or changed toward sustainable systems, although further research is required on residue and stubble management, and integrated weed control methods to drill the soil with high amounts of residue on the field.
  • Authors:
    • Rangel, D.
    • Jacobson, A. R.
    • Laba, M.
    • Darnault, C.
    • Otten, W.
    • Radulovich, R.
    • Camargo, F. A. O.
    • Baveye, P. C.
  • Source: Soil Science Society of American Journal
  • Volume: 75
  • Issue: 6
  • Year: 2011
  • Summary: When the Soil Science Society of America was created, 75 yr ago, the USA was suffering from major dust storms, causing the loss of enormous amounts of topsoil as well as human lives. These catastrophic events reminded public officials that soils are essential to society's well-being. The Soil Conservation Service was founded and farmers were encouraged to implement erosion mitigation practices. Still, many questions about soil processes remained poorly understood and controversial. In this article, we argue that the current status of soils worldwide parallels that in the USA at the beginning of the 20th century. Dust bowls and large-scale soil degradation occur over vast regions in a number of countries. Perhaps more so even than in the past, soils currently have the potential to affect populations critically in several other ways as well, from their effect on global climate change, to the toxicity of brownfield soils in urban settings. Even though our collective understanding of soil processes has experienced significant advances since 1936, many basic questions still remain unanswered, for example whether or not a switch to no-till agriculture promotes C sequestration in soils, or how to account for microscale heterogeneity in the modeling of soil organic matter transformation. Given the enormity of the challenges raised by our (ab)uses of soils, one may consider that if we do not address them rapidly, and in the process heed the example of U.S. public officials in the 1930s who took swift action, humanity may not get a chance to explore other frontiers of science in the future. From this perspective, insistence on the fact that soils are critical to life on earth, and indeed to the survival of humans, may again stimulate interest in soils among the public, generate support for soil research, and attract new generations of students to study soils.
  • Authors:
    • Robertson,G. P.
    • Hamilton,S. K.
    • Jasrotia,P.
    • Bhardwaj,A. K.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 140
  • Issue: 3-4
  • Year: 2011
  • Summary: Intensively cropped agricultural production systems should be managed to improve soil quality and ecological processes and ultimately strengthen system capacity for sustained biological productivity. We examined the long-term changes (>20 years) in soil quality and productivity with incorporation of ecological management principles in a set of intensively managed row crop systems of the upper Midwest, USA. Replicated experimental treatments include corn (maize)-soybean-wheat cropping systems under four different management regimes: (a) conventional tillage and fertilizer/chemical inputs ( Conventional), (b) no tillage with conventional fertilizer/chemical inputs ( No-till), (c) conventional tillage with 30% of conventional fertilizer/chemical inputs and a leguminous cover crop ( Reduced Input), and (d) conventional tillage with no fertilizer/chemical input and a leguminous cover crop ( Organic). Effects of these treatments on soils were compared by developing a soil quality index (SQI) from 19 selected soil health indicators. An old field community maintained in early succession provided a benchmark for comparison. Reduction in tillage or fertilizer ( No-till, Reduced Input and Organic) resulted in increased SQI and improved crop production. The No-till (SQI=1.02) and Reduced Input (SQI=1.01) systems outperformed Conventional management (SQI=0.92) in nitrogen availability and use efficiency, soil stability and structure improvement, and microbial nitrogen processing. Improvements in soil quality corresponded with increased primary production and crop yield in these systems, illustrating the value of an ecologically defined SQI for assessing the long-term effects of fertility and tillage management regimes in agricultural production systems.
  • Authors:
    • Beres, B. L.
    • Carcamo, H. A.
    • Dosdall, L. M.
    • Yang, R. C.
    • Evenden, M. L.
    • Spaner, D. M.
  • Source: Agronomy Journal
  • Volume: 103
  • Issue: 6
  • Year: 2011
  • Summary: Most semiarid regions of the northern Great Plains are prone to wheat stem sawfly (Hymenoptera: Cephidae, Cephus cinctus Norton) attack. As an alternative to the wheat ( Triticum aestivum L.)-fallow system, our objective was to determine if continuous cropping infested wheat stubble would inhibit wheat stem sawfly (WSS) emergence. Adult sawfly emergence from undisturbed stubble was compared to stubble harrowed with heavy tine or rotary drum harrows before recropping. Adult emergence from a control of "no recropping" was compared to direct seeding infested stubble with (i) air drills configured with knife-type openers spaced 23 or 30 cm apart, (ii) an air drill configured with high disturbance shovel-type sweep openers, and (iii) a low disturbance air drill equipped with disc openers. Pre-seed heavy tine harrowing reduced adult sawfly emergence but usually required a high tension setting. No-till planting into infested spring wheat stubble also lowered WSS emergence compared to leaving the field fallow. A system of heavy tine harrows and an air drill equipped with knife openers spaced 30 cm apart reduced WSS adult emergence in spring by 50 to 70%. Grain yield was optimized in spring wheat with air drills equipped with narrow knife openers; in winter wheat optimal yield was obtained with the low disturbance disc drill configurations. Our results indicate incremental benefits from continuous cropping rather than fallowing fields infested with WSS, which is a sustainable alternative to conventional tillage. A systems approach is recommended that integrates these practices with diversified nonhost crop phases and resistant cultivars.
  • Authors:
    • Hyovela, M.
    • Hurme, T.
    • Niskanen, M.
    • Laine, A.
    • Kontturi, M.
    • Peltonen-Sainio, P.
  • Source: Acta Agriculturae Scandinavica Section B-Soil and Plant Science
  • Volume: 61
  • Issue: 7
  • Year: 2011
  • Summary: Locally produced crop protein is urgently needed in Europe. Pea is a good protein source and is well adapted to northern conditions. Pea can fix nitrogen that the following crop in rotation can benefit from. In cereal-dominated cropping systems pea is a break crop disrupting the life cycle of cereal diseases, leading to less fungicide application and thereby minimizing off farm inputs and benefiting the environment. Grain legumes provide animals with protein and energy, and the seeds of pulse crops are complementary to those of cereals. Field peas can be cultivated in most parts of Scandinavia and interest in peas has increased for inclusion in organic farming. Growing pea as a sole crop is a challenge since its stem is prone to lodging thereby resulting in harvesting difficulties, reduced yield and decreased profits. Intercropping of pea with oat could minimize the above listed problems but to our knowledge proportion of seeds mixture of the two crops and selection of pea cultivars without compromising the pea yield, especially protein production, at high latitudes conditions is limited. Therefore, our objective was to evaluate performance of sole cropped pea (Karita, Perttu, Hulda) and oat (seed proportions 7.5% and 15%) and their intercrop combinations and establish an appropriate seed mixture for a pea-oat intercropping systems that prevents lodging without markedly reducing pea yield. Field experiments were conducted at three locations (Jokioinen, Mietoinen, Ylistaro) of the Agrifood Research Finland in 2002-2004. Intercropping peas with oats prevented peas from lodging and made their harvest easier. Optimal numbers of oats in pea intercrops were difficult to determine, varying according to pea cultivar and local growth conditions. Excess oats in the seed mixture or conditions favouring oat growth prevented peas from lodging but pea yield was decreased.
  • Authors:
    • Walter-Shea, E. A.
    • Singh, R. K.
    • Irmak, A.
    • Verma, S. B.
    • Suyker, A. E.
  • Source: Transactions of the American Society of Agricultural and Biological Engineers and Papers in Natural Resources. Paper 334.
  • Volume: 54
  • Issue: 1
  • Year: 2011
  • Summary: We evaluated the performance of four models for estimating soil heat flux density (G) in maize (Zea mays L.) and soybean (Glycine max L.) fields under different irrigation methods (center-pivot irrigated fields at Mead, Nebraska, and subsurface drip irrigated field at Clay Center, Nebraska) and rainfed conditions at Mead. The model estimates were compared against measurements made during growing seasons of 2003, 2004, and 2005 at Mead and during 2005, 2006, and 2007 at Clay Center. We observed a strong relationship between the G and net radiation (R n) ratio (G/R n) and the normalized difference vegetation index (NDVI). When a significant portion of the ground was bare soil, G/R n ranged from 0.15 to 0.30 and decreased with increasing NDVI. In contrast to the NDVI progression, the G/R n ratio decreased with crop growth and development. The G/R n ratio for subsurface drip irrigated crops was smaller than for the center-pivot irrigated crops. The seasonal average G was 13.1%, 15.2%, 10.9%, and 12.8% of R n for irrigated maize, rainfed maize, irrigated soybean, and rainfed soybean, respectively. Statistical analyses of the performance of the four models showed a wide range of variation in G estimation. The root mean square error (RMSE) of predictions ranged from 15 to 81.3 W m -2. Based on the wide range of RMSE, it is recommended that local calibration of the models should be carried out for remote estimation of soil heat flux.
  • Authors:
    • Esker, P. D.
    • Jirak-Peterson, J. C.
  • Source: Plant Disease
  • Volume: 95
  • Issue: 5
  • Year: 2011
  • Summary: Corn anthracnose (Colletotrichum graminicola) is an important disease of field coni (Zea mays). Two phases, leaf blight and stalk rot, can reduce yield through either premature leaf senescence or reduced grain harvest due to stalk lodging. Corn residue is an important source of primary inoculum and is increased through cultural practices such as no-tillage and continuous corn cropping, which are common practices in Wisconsin. Field studies conducted at the Arlington Agricultural Research Station (ARS) and the West Madison ARS showed that the incidence and severity of anthracnose leaf blight were higher in continuous-corn crop rotations than in soybean corn rotations (91% higher incidence, 24 to 78% higher severity). Anthracnose stalk rot was marginally affected by tillage in 2008 (P = 0.09), with higher incidence in chisel-plowed treatments. There was a positive association between spring residue cover and anthracnose leaf blight but no association was found between residue and stalk rot. No association was found between anthracnose leaf blight and stalk rot. There was a negative association between anthracnose leaf blight and yield but not between anthracnose stalk rot and yield. Managing residue levels through crop rotation would help to reduce anthracnose leaf blight but further work is needed to elucidate factors that lead to stalk lodging prior to harvest.
  • Authors:
    • Verma, S. B.
    • Vanegas, D. X.
    • Xiao, X. M.
    • Kalfas, J. L.
    • Suyker, A. E.
  • Source: Agricultural and Forest Meteorology
  • Volume: 151
  • Issue: 12
  • Year: 2011
  • Summary: Information on gross primary production (GPP) of maize croplands is needed for assessing and monitoring maize crop conditions and the carbon cycle. A number of studies have used the eddy covariance technique to measure net ecosystem exchange (NEE) of CO 2 between maize cropland fields and the atmosphere and partitioned NEE data to estimate seasonal dynamics and interannual variation of GPP in maize fields having various crop rotation systems and different water management practices. How to scale up in situ observations from flux tower sites to regional and global scales is a challenging task. In this study, the Vegetation Photosynthesis Model (VPM) and satellite images from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to estimate seasonal dynamics and interannual variation of GPP during 2001-2005 at five maize cropland sites located in Nebraska and Minnesota of the U.S.A. These sites have different crop rotation systems (continuously maize vs. maize and soybean rotated annually) and different water management practices (irrigation vs. rain-fed). The VPM is based on the concept of light absorption by chlorophyll and is driven by the Enhanced Vegetation Index (EVI) and the Land Surface Water Index (LSWI), photosynthetically active radiation (PAR), and air temperature. The seasonal dynamics of GPP predicted by the VPM agreed well with GPP estimates from eddy covariance flux tower data over the period of 2001-2005. These simulation results clearly demonstrate the potential of the VPM to scale-up GPP estimation of maize cropland, which is relevant to food, biofuel, and feedstock production, as well as food and energy security.