Citation Information

  • Title : Corn yield and soil nitrous oxide emission under different fertilizer and soil management: a three-year field experiment in middle Tennessee.
  • Source : Web Of Knowledge
  • Publisher : Public Library of Sciences (PLoS)
  • Volume : 10
  • Issue : 4
  • Year : 2015
  • DOI : 10.1371/journal.pone.0125406
  • ISBN : 1932-6203
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Deng,Q.
    • Hui,D. F.
    • Wang,J. M.
    • Iwuozo,S.
    • Yu,C. L.
    • Jima,T.
    • Smart,D.
    • Reddy,C.
    • Dennis,S.
  • Climates: Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Corn. Maize. No-till cropping systems. Till cropping systems.
  • Countries: USA.

Summary

Background: A three-year field experiment was conducted to examine the responses of corn yield and soil nitrous oxide (N 2O) emission to various management practices in middle Tennessee. Methodology/Principal Findings: The management practices include no-tillage + regular applications of urea ammonium nitrate (NT-URAN); no-tillage + regular applications of URAN + denitrification inhibitor (NT-inhibitor); no-tillage + regular applications of URAN + biochar (NT-biochar); no-tillage + 20% applications of URAN + chicken litter (NT-litter), no-tillage + split applications of URAN (NT-split); and conventional tillage + regular applications of URAN as a control (CT-URAN). Fertilizer equivalent to 217 kg N ha -1 was applied to each of the experimental plots. Results showed that no-tillage (NT-URAN) significantly increased corn yield by 28% over the conventional tillage (CT-URAN) due to soil water conservation. The management practices significantly altered soil N 2O emission, with the highest in the CT-URAN (0.48 mg N 2O m -2 h -1) and the lowest in the NT-inhibitor (0.20 mg N 2O m -2 h -1) and NT-biochar (0.16 mg N 2O m -2 h -1) treatments. Significant exponential relationships between soil N 2O emission and water filled pore space were revealed in all treatments. However, variations in soil N 2O emission among the treatments were positively correlated with the moisture sensitivity of soil N 2O emission that likely reflects an interactive effect between soil properties and WFPS. Conclusion/Significance: Our results indicated that improved fertilizer and soil management have the potential to maintain highly productive corn yield while reducing greenhouse gas emissions.

Full Text Link